Abstract
This paper proposes a novel state-space matrix interpolation technique to generate linear parameter-varying (LPV) models starting from a set of local linear time-invariant (LTI) models estimated at fixed operating conditions. Since the state-space representation of LTI models is unique up to a similarity transformation, the state-space matrices need to be represented in a common state-space form. This is needed to avoid potentially large variations as a function of the scheduling parameters of the state-space matrices to be interpolated due to underlying similarity transformations, which might degrade the accuracy of the interpolation significantly. Underlying linear state coordinate transformations for a set of local LTI models are extracted by the computation of similarity transformation matrices by means of linear least-squares approximations. These matrices are then used to transform the local LTI state-space matrices into a form suitable to achieve accurate interpolation results. The proposed LPV modeling technique is validated by pertinent numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.