Abstract
We present a new version of the local discontinuous Galerkin method which is capable of dealing with jump conditions along a submanifold ΓLG (i.e., Henry’s Law) in instationary Darcy flow. Our analysis accounts for a spatially and temporally varying, non-linear permeability tensor in all estimates which is also allowed to have a jump at ΓLG and gives a convergence order result for the primary and the flux unknowns. In addition to this, different approximation spaces for the primary and the flux unknowns are investigated. The results imply that the most efficient choice is to choose the degree of the approximation space for the flux unknowns one less than that of the primary unknown. The only stabilization in the proposed scheme is represented by a penalty term in the primary unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.