Abstract

ABSTRACTIn oversaturated urban traffic conditions when traffic demand exceeds capacity at signalised intersections, queues fail to clear during the allocated green times. Once a queue reaches the upstream intersection in an arterial, a queue spillback occurs that reduces the upstream link capacity. To mitigate the negative impacts of spillbacks, this article introduces a real-time adaptive traffic signal control method for global management of spillbacks along signalised arterials. The key idea of the proposed method is to implement a real-time partitioning of the arterial to detect critical cluster(s) of consecutive links with oversaturated traffic conditions. The partitioning approach enables to develop locally smaller-sized decentralised signal control strategies operating on the most upstream and downstream intersections of each cluster. Micro-simulation investigations on a real-world arterial site demonstrate the benefits of the proposed approach compared to an existing pre-timed signal control strategy and a classical decentralised green extension strategy. Utilising an advanced queue length detection method and specific focus on queue spillbacks prevention, the control strategy leads to significant reduction of congestion, and arterial total delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.