Abstract

We study a one-dimensional multi-species system of dispersive-advective contaminant transport equations coupled by nonlinear biological (kinetic reactions) and physical (adsorption) processes. To deal with the nonlinearities and the coupling, and to avoid additional computational costs, we propose a linearization technique based on first-order Taylor’s series expansions. A stabilized finite element in space, combined with an Euler implicit finite difference discretization in time, is used to approximate the dispersive-advective transport problem. Three computational tests are performed with different boundary conditions, retardation factors and kinetic parameters for a nonlinear reactive multi-species transport model. The proposed methodology is shown to be accurate and decrease computational costs in the numerical implementation of nonlinear reactive transport problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.