Abstract

Conventional sparseness-based approaches for instantaneous underdetermined blind source separation (UBSS) do not take into account the temporal structure of the source signals. In this work, we exploit the source temporal structure and propose a linear source recovery solution for the UBSS problem which does not require the source signals to be sparse. Assuming the source signals are uncorrelated and can be modeled by an autoregressive (AR) model, the proposed algorithm is able to estimate the source AR coefficients from the mixtures given the mixing matrix. We prove that the UBSS problem can be converted into a determined problem by combining the source AR model together with the original mixing equation to form a state-space model. The Kalman filter is then applied to obtain a linear source estimate in the minimum mean-squared error sense. Simulation results using both synthetic AR signals and speech utterances show that the proposed algorithm achieves better separation performance compared with conventional sparseness-based UBSS algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.