Abstract

In this paper, a linear torque control strategy is first proposed for interior permanent magnet synchronous motor drives to fully utilize the reluctance torque and simplify the controller design. The proposed linear torque control strategy also extends the existing maximum torque per ampere control in the constant torque limit region up to the entire field-weakening region. It is found that in an intermediate speed region, called partial field-weakening region, the existing maximum torque per ampere control can still be applied under lighter load condition. In addition, the proposed control can also achieve the objective of minimum copper loss (i.e., maximum torque per ampere) for the entire speed range. Sound theoretical basis is given in the context. Moreover, an adaptive limiter is proposed for efficiently implementing the proposed control strategy over the entire speed range. Finally, a prototype is also constructed by using a fixed-point DSP TMS320F240 and some experimental results are given to verify the validity of the proposed control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.