Abstract

We couple the L1 discretization for the Caputo derivative in time with the spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove the stability and convergence of the method with spectral accuracy in space. The temporal order depends on the regularity of the solution in time. Furthermore, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result, we find exact asymptotic values of the error constants along with their remainders for discretizations of the Caputo derivative and fractional integrals. These constants are the smallest possible, which improves previously established results from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.