Abstract

A linear doubly salient permanent magnet (LDSPM) motor is particularly suitable for long stator applications due to its simple and low cost stator, which consists of only iron. This paper proposes a new LDSPM motor design with complementary and modular structure. The key of this structure is that the primary mover is composed of two modules whose positions are mutually four and one half of the stator pole pitch apart and there is a flux barrier between them. Hence, the back electromotive force (EMF) waveform and cogging force of the two modules have 180 electrical degree differences. This design results in the total cogging force being significantly reduced and the back-EMF of each phase becoming symmetrical because the even harmonics are canceled. For fair comparison, an existing linear LDSPM motor is designed based on the same electromagnetic parameters and compared by the means of finite element analysis (FEA). The results reveal that the proposed LDSPM motor can offer symmetrical back-EMF waveforms, smaller cogging force, lower force ripple, and higher magnet utilization factor than the existing one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.