Abstract
This study aims to present a limited memory BFGS algorithm to solve non-convex minimization problems, and then use it to find the largest eigenvalue of a real symmetric positive definite matrix. The proposed algorithm is based on the modified secant equation, which is used to the limited memory BFGS method without more storage or arithmetic operations. The proposed method uses an Armijo line search and converges to a critical point without convexity assumption on the objective function. More importantly, we do extensive experiments to compute the largest eigenvalue of the symmetric positive definite matrix of order up to 54,929 from the UF sparse matrix collection, and do performance comparisons with EIGS (a Matlab implementation for computing the first finite number of eigenvalues with largest magnitude). Although the proposed algorithm converges to a critical point, not a global minimum theoretically, the compared results demonstrate that it works well, and usually finds the largest eigenvalue of medium accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.