Abstract
Accurate tropical cyclone (TC) intensity and size estimation are key in disaster management and prevention. While great breakthroughs have been made in TC intensity estimation research, there is currently a lack of research on TC size reflecting TC influence radius. Therefore, we propose a lightweight multi-task learning model (TC-MTLNet) with adaptive loss balance to simultaneously estimate TC intensity and size. Adaptive loss balance is utilized to solve the problem of inconsistent convergence speed of TC intensity and size estimation tasks. The model based on four 2-D convolutions, four 3-D convolutions and three fully connected layers takes up less computational and storage space and improves the accuracy of TC intensity and size estimation by sharing knowledge among multiple tasks. In addition, due to the imbalanced distribution of TC samples, with significantly few low-intensity and high-intensity TC satellite data, this phenomenon poses a great challenge to TC intensity and size estimation. So, we utilize the influence of nearby samples to calibrate the sample density to weight the loss function to enable the model to be generalized to all samples. The result shows that the root-mean-square error (RMSE) of TC intensity estimation is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\text{8.40}\,\text{kts}$</tex-math></inline-formula> , which is 33.5% lower than that of the Advanced Dvorak Technique (ADT) and 11.4% lower than that of the deep learning method (3DAttentionTCNet). The mean absolute error (MAE) of the TC size estimation is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\text{20.89}\,\text{nmi}$</tex-math></inline-formula> , which is a 16% reduction compared to the Multi-Platform Tropical Cyclone Surface Winds Analysis (MTCSWA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.