Abstract
The accuracy of insulators and their defect identification by UAVs (unmanned aerial vehicles) in transmission-line inspection needs to be further improved, and the model size of the detection algorithm is significantly reduced to make it more suitable for edge-end deployment. In this paper, the algorithm uses a lightweight GhostNet module to reconstruct the backbone feature extraction network of the YOLOv4 model and employs depthwise separable convolution in the feature fusion layer. The model is lighter on the premise of ensuring the effect of image information extraction. Meanwhile, the ECA-Net channel attention mechanism is embedded into the feature extraction layer and PANet (Path Aggregation Network) to improve the recognition accuracy of the model for small targets. The experimental results show that the size of the improved model is reduced from 244 MB to 42 MB, which is only 17.3% of the original model. At the same time, the mAp of the improved model is 0.77% higher than that of the original model, reaching 95.4%. Moreover, the mAP compared with YOLOv5-s and YOLOX-s, respectively, is improved by 1.98% and 1.29%. Finally, the improved model is deployed into Jetson Xavier NX and run at a speed of 8.8 FPS, which is 4.3 FPS faster than the original model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.