Abstract

Fluorescent labeling of bacterial cell walls, DNA, and metabolic processes demonstrates high (potentially single molecule) sensitivity, is non-invasive, and in some cases can differentiate strains and species. Robust microscopes such as the custom instruments presented here can provide good image quality in the field and are potentially suitable for flight. However, ambiguous or false-positive results with bacterial stains can occur and can create difficulties in interpretation even on Earth. We present a “real” life detection problem in a sample of biofilms taken from the Canadian High Arctic. The samples consisted of numerous small sulfur-oxidizing bacteria and larger structures resembling fungi or diatoms. The identity of these latter structures remained ambiguous until electron microscopy and X-ray spectroscopy were performed, indicating that they were unusual sulfur minerals probably precipitated by the bacterial communities. While such mineral structures may possibly serve as biosignatures after the cells have disappeared, it is important that they not be mistaken for cells themselves. It is also possible that unusual mineral structures will be performed under extraterrestrial conditions, so great care is needed to differentiate cell structures from minerals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.