Abstract

BackgroundThe application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the Δ12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate Δ12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality.ResultsWe report here the characterization and functional expression of an exceptionally large FAD2 gene family from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head, respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5 and CtFAD2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1 substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans configuration, or a carbon triple (acetylenic) bond at the Δ12 position.ConclusionsIn this study, we isolated an unusually large FAD2 gene family with 11 members from safflower. The seed expressed FAD2 oleate Δ12 desaturase genes identified in this study will provide candidate targets to manipulate the oleic acid level in safflower seed oil. Further, the divergent FAD2 enzymes with novel functionality could be used to produce rare fatty acids, such as crepenynic acid, in genetically engineered crop plants that are precursors for economically important phytoalexins and oleochemical products.

Highlights

  • The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid

  • Cloning and sequencing analysis of multiple members of safflower Carthamus tinctorius FAD2 (CtFAD2) gene family Two different full length cDNAs, designated as CtFAD2-1 and CtFAD2-2, were isolated from the lambda cDNA library derived from safflower developing embryos, using Arabidopsis Microsomal Δ12 fatty acid desaturase (FAD2) DNA sequence as a probe

  • The Arabidopsis FAD2 DNA sequence was used to “blast” search the Expressed Sequence Tags (ESTs) database generated by the Compositae Genome Project (CGP, http://compgenomics.ucdavis.edu/compositae_index.php)

Read more

Summary

Introduction

The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the Δ12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. Oleic acid (C18:1Δ9) and linoleic acid (C18:2Δ9,12) are the two major fatty acids found in safflower seed oil, higher oxidative stability compared to linoleic acid as it contains one less double bond. Raising oleic acid content at the expense of linoleic acid has been set as an important research objective for the improvement of many oilseed crops, including safflower, to provide highly stable cooking oils without the need for hydrogenation, a process that can result in the formation of nutritionally undesirable trans fatty acid [3,4]. Purified oleic acid is a valuable industrial chemical feedstock, and can be cleaved to form derivatives such as azelaic acid that can be used in the formulation of a range of industrial products and polymers [5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.