Abstract

A Laplace decomposition algorithm is adopted to investigate numerical solutions of a class of nonlinear partial differential equations with nonlinear term of any order, utt + auxx + bu + cup + du2p−1 = 0, which contains some important equations of mathematical physics. Three distinct initial conditions are constructed and generalized numerical solutions are thereby obtained, including numerical hyperbolic function solutions and doubly periodic ones. Illustrative figures and comparisons between the numerical and exact solutions with different values of p are used to test the efficiency of the proposed method, which shows good results are achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.