Abstract

This paper explores the connections between the classical maximum clique problem and its edge-weighted generalization, the maximum edge weight clique (MEWC) problem. As a result, a new analytic upper bound on the clique number of a graph is obtained and an exact algorithm for solving the MEWC problem is developed. The bound on the clique number is derived using a Lagrangian relaxation of an integer (linear) programming formulation of the MEWC problem. Furthermore, coloring-based bounds on the clique number are used in a novel upper-bounding scheme for the MEWC problem. This scheme is employed within a combinatorial branch-and-bound framework, yielding an exact algorithm for the MEWC problem. Results of computational experiments demonstrate a superior performance of the proposed algorithm compared with existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.