Abstract

In this work, we report, for the first time, the construction of a label-free electrochemical immunosensor for highly sensitive detection of a new lung cancer biomarker, GM2 activator protein (GM2AP). A polyethyleneimine-coated gold nanoparticle (PEI-AuNP) and phosphomolybdic acid (PMA) modified electrode is developed as a novel redox platform for GM2AP detection. A PEI-AuNP film-modified screen-printed carbon electrode, as a signal amplifier support, was successfully fabricated for the adsorption of PMA redox molecules and is used for signal amplification. Under the optimized conditions, GM2AP detection is based on a decrease in the current response of PMA redox probes proportionally relative to an amount of the immunocomplex. Our sensor exhibits two linear ranges of 0.005-25 and 25-400 ng mL-1 with a limit of detection (LOD) of 0.51 pg mL-1. The immunosensor is successfully applied for the determination of GM2AP in both human urine and serum samples. The proposed sensor offers the advantages of simple fabrication, low cost, rapid analysis, satisfactory stability, high selectivity and sensitivity, and good reproducibility. The LOD of the biosensor is approximately 2863 and 1804 fold lower than the clinically relevant levels in human urine and serum, respectively. Our strategy can be used as an alternative non-invasive clinical analysis method for lung cancer screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.