Abstract
In this study, changes in lightness, roast loss, residual CO2, and total volatiles of an Arabica coffee were investigated under isothermal conditions at 220, 230, 240, and 250 °C. The lightness of the roasted coffee, expressed as L* value, followed two-stage processes that could be modeled using pseudo first-order reaction models, giving activation energies of 59.7 and 170.2 kJ/mol for the first and second stages, respectively. Roast loss data also exhibited two-stage behavior, but followed zero-order reaction kinetics, with activation energies of 52.9 and 181.3 kJ/mol for the first and second stage, respectively. The first-to-second stage transition for L* value and roast loss occurred at light-medium roast. Residual CO2 in the coffee beans correlated negatively with L* value below medium-dark roast degree. However, a reversed correlation was observed above dark roast degree. The volatile compounds generated in roasted coffee were highly dependent on roasting temperature and roast degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.