Abstract

This paper describes an iterative combinatorial auction for single-minded bidders that offers modularity in the choice of price structure, drawing on ideas from kernel methods and the primal-dual paradigm of auction design. In our implementation, the auction is able to automatically detect, as the rounds progress, whether price expressiveness must be increased to clear the market. The auction also features a configurable step size which can be tuned to trade-off between monotonicity in prices and the number of bidding rounds, with no impact on efficiency. An empirical evaluation against a state of the art ascending-price auction demonstrates the performance gains that can be obtained in efficiency, revenue, and rounds to convergence through various configurations of our design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.