Abstract

We consider modulational solutions to the 3D inviscid incompressible irrotational infinite depth water wave problem, neglecting surface tension. For such solutions, it is well known that one formally expects the modulation to be a profile traveling at group velocity and governed by a 2D hyperbolic cubic nonlinear Schrodinger equation. In this paper we justify this fact by providing rigorous error estimates in Sobolev spaces. We reproduce the multiscale calculation to derive an approximate wave packet-like solution to the evolution equations with mild quadratic nonlinearities constructed by Sijue Wu. Then we use the energy method along with the method of normal forms to provide suitable a priori bounds on the difference between the true and approximate solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.