Abstract

This article proposes a joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model with t-distributed measurement errors for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the survival outcome, and a regression sub-model for the variance-covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. A Bayesian MCMC procedure is developed for parameter estimation and inference. Our method is insensitive to outlying longitudinal measurements in the presence of non-ignorable missing data due to dropout. Moreover, by modeling the variance-covariance matrix of the latent random effects, our model provides a useful framework for handling high-dimensional heterogeneous random effects and testing the homogeneous random effects assumption which is otherwise untestable in commonly used joint models. Finally, our model enables analysis of a survival outcome with intermittently measured time-dependent covariates and possibly correlated competing risks and dependent censoring, as well as joint analysis of the longitudinal and survival outcomes. Illustrations are given using a real data set from a lung study and simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.