Abstract
High-performance Computing (HPC) systems have become essential instruments in our modern society. As they get closer to exascale performance, HPC systems become larger in size and more heterogeneous in their computing resources. With recent advances in AI, HPC systems are also increasingly being used for applications that employ many short jobs with strict timing requirements. HPC job dispatchers need to therefore adopt techniques to go beyond the capabilities of those developed for small or homogeneous systems, or for traditional compute-intensive applications. In this paper, we present a job dispatcher suitable for today’s large and heterogeneous systems running modern applications. Unlike its predecessors, our dispatcher solves the entire dispatching problem using Constraint Programming (CP) with a model size independent of the system size. Experimental results based on a simulation study show that our approach can bring about significant performance gains over the existing CP-based dispatchers in a large or heterogeneous system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.