Abstract

Comparing phase plots of truncated series solutions of Kepler’s equation by Lagrange’s power series with those by Bessel’s Kapteyn series strongly suggests that a Jentzsch-type theorem holds true not only for the former but also for the latter series: each point of the boundary of the domain of convergence in the complex plane is a cluster point of zeros of sections of the series. We prove this result by studying properties of the growth function of a sequence of entire functions. For series, this growth function is computable in terms of the convergence abscissa of an associated general Dirichlet series. The proof then extends, besides including Jentzsch’s classical result for power series, to general Dirichlet series, to Kapteyn, and to Neumann series of Bessel functions. Moreover, sections of Kapteyn and Neumann series generally exhibit zeros close to the real axis which can be explained, including their asymptotic linear density, by the theory of the distribution of zeros of entire functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.