Abstract

A simple jellium model is used to investigate the stability of a metal nanowire as a function of its size. The theoretical results from the model indicate the quantum selectivity of preferable radii of nanowires, in apparent agreement with the experimental observations. It is consequently suggested that a series of stable “magic numbers” and “instability gaps” observed in the synthesis experiments of Au nanowires is mainly attributed to the quantum-mechanical behavior. These stable radii can be achieved by rearranging atoms during the formation of nanowires. The model is also used to analyze the growth of Au nanomesas on a graphite surface, and the puzzling growth behavior of Au nanomesas can be reasonably explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.