Abstract
Recent evidence argues strongly that the marked increase in risk for atherosclerotic heart disease seen in diabetics cannot be explained by a generalized increase in oxidative stress. Here, we used streptozotocin to induce hyperglycemia in cynomolgus monkeys for 6 months and tested whether high glucose levels promote localized oxidative damage to artery wall proteins. We focused on three potential agents of oxidative damage: hydroxyl radical, tyrosyl radical, and reactive nitrogen species. To determine which pathways operate in vivo, we quantified four stable end products of these reactants -- ortho-tyrosine, meta-tyrosine, o,o'-dityrosine, and 3-nitrotyrosine -- in aortic proteins. Levels of ortho-tyrosine, meta-tyrosine, and o,o'-dityrosine, but not of 3-nitrotyrosine, were significantly higher in aortic tissue of hyperglycemic animals. Of the oxidative agents we tested, only hydroxyl radical mimicked this pattern of oxidized amino acids. Moreover, tissue levels of ortho-tyrosine and meta-tyrosine correlated strongly with serum levels of glycated hemoglobin, a measure of glycemic control. We conclude that short-term hyperglycemia in primates promotes oxidation of artery wall proteins by a species that resembles hydroxyl radical. Our observations suggest that glycoxidation reactions in the arterial microenvironment contribute to early diabetic vascular disease, raising the possibility that antioxidant therapies might interrupt this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.