Abstract

Proton nuclear magnetic resonance ( 1H-NMR) spectroscopy is used to identify a preferred binding site for uncharged hydrophilic polymers on the surface of hen egg-white lysozyme. Chemical shift titrations show that exchangeable proton signals from amino acids Arg-61, Trp-62, Trp-63, Arg-73, Lys-96 and Asp-101 are selectively perturbed upon binding of poly(ethylene oxide), poly(ethylene glycol) and poly(ethylene-co-propylene oxide). The greatest binding-induced chemical shift changes are observed for Trp-62, Arg-61 and Arg-73 at the edge of the active site cleft of the protein, consistent with a predominantly hydrophobic interaction mode involving the polymer ethylene moieties. The more hydrophilic species poly(dihydroxypropyl methacrylate) causes similar but substantially smaller chemical shift effects than the other polymers, confirming the nature of the interaction. A dissociation constant of 76±5 m m is determined for the poly(ethylene glycol)–lysozyme complex. The relatively low affinity of the protein–polymer interactions compared to oligosaccharide substrate binding suggests that lysozyme activity is minimally affected by these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.