Abstract

A hybridized chain reaction (HCR)-based biosensing method has been developed for the imaging detection of intracellular telomerase activity. The telomerase-targeting responder-transmitter DNA complex (HPT) consisting of telomerase primer sequence (HP) and a HCR initiator (trigger) is transfected into cell plasma. In the presence of telomerase, HPT can be recognized and extended, producing plenty of triggers which initiate HCR amplification reaction. Finally, a long nicked dsDNA with a lot of outstretched single chains was formed by hybridizing with Q of the reporter complex, generating an enhanced fluorescence signal. The developed biosensing approach can be used for the detection of telomerase activity in cell lysate with the detection limit of 578 cells/100 μl. In addition, this strategy has been successfully applied not only for the sensitive and specific imaging of telomerase activity in living cells but also for comparing of telomerase activity among different cell lines. Therefore, the method might become a potential alternative tool for telomerase-related cancer diagnosis and therapy in medical research and early clinical diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.