Abstract

Harvesting energy from wind to supply low-power consumption devices has attracted numerous research interests in recent years. However, a traditional vortex-induced vibration energy harvester can only operate within a limited range of wind speed. Thus, how to broaden the effective wind speed range for energy harvesting is a challenging issue. In this paper, a slotted cylinder bluff body is proposed for being used in the design of a wind energy harvester. The physical prototype is manufactured and the wind tunnel test is performed for evaluating the actual performance of the prototyped energy harvester. The effect of the orientation of the slot on the performance of the proposed energy harvester is experimentally investigated. As compared to the traditional counterpart without the slot at the lateral side of the bluff body, the proposed energy harvester demonstrates the superiority for realizing broadband energy harvesting. Due to the introduction of the slot, and by carefully tuning the orientation of the slot, both the vortex-induced vibration and the galloping phenomena can be stimulated within two neighboring wind speed ranges, leading to the formation of an extremely broad bandwidth for energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.