Abstract

The lack of ground level observation stations outside of settlements makes monitoring and forecasting local weather and permafrost challenging in the Arctic. Such predictive pieces of information are essential to help prepare for potentially hazardous weather conditions, especially during winter. In this study, we aim at enhancing predictive analytics in Alaska of permafrost and temperature by using a hybrid forecasting technique. In particular, we propose VMD-WT-InceptionTime model for short-term air temperature forecasting.This proposed technique incorporates data preprocessing techniques and deep learning to enhance the accuracy of the next seven days air temperature forecasts. Initially, the Spearman correlation coefficient is utilized to examine the relationship between different inputs and the forecast target temperature. Following this, Variational Mode Decomposition (VMD) is used to decompose the most output-correlated input variables (i.e., temperature and relative humidity) to extract intrinsic and non-stationary time-frequency features from the original sequences. The Wavelet Transform (WT) is then employed to further extract intrinsic multi-resolution patterns from these decomposed input variables. Finally, a deep InceptionTime model is used for multi-step air temperature forecasting using these processed sequences. This forecasting technique was developed using an open dataset holding 20+ years of data from three locations in Alaska: North Slope, Alaska, Arctic National Wildlife Refuge, Alaska, and Diomede Island region, Bering Strait. Model performance has been rigorously evaluated of metrics including RMSE, MAPE and error.Results highlight the effectiveness of the proposed hybrid model in providing more accurate short-term forecasts than several baselines (GBDT, SVR, ExtraTrees, RF, ARIMA, LSTM, GRU, and Transformer). More specifically, this technique reported RMSE and MAPE average increase rates amounting to 11.21% and 16.13% in North Slope, 30.01% and 34.97% in Arctic National Wildlife Refuge, and 16.39%, 23.46% in Diomede Island region. In addition, the proposed technique produces forecasts over all seven horizons with a maximum error of <1.5K, a minimum error of >-1.2K, and an average error lower than 0.18K for North Slope. For Arctic National Wildlife Refuge, a maximum error of <1K, a minimum error of >-0.9K, and an average of < 0.1K. While a maximum error of <0.9K, a minimum error of >-0.8K, and an average of <0.13K, for Diomede Island region. However, the worst performances achieved were errors of around 6K in the third horizon (i.e., 3rd day) for North Slope and the Arctic National Wildlife Refuge and the last horizon (i.e., 7th day) for the Diomede Islands region. Most of the worst performances of the proposed technique in all three locations can be attributed to having to produce forecasts of higher variations and wider temperature ranges than their averages.Overall, this research highlights the potential of the decomposition techniques and deep learning to: 1) reveal and effectively learn the underlying cyclicity of air temperatures at varying resolutions that allows for accurate predictions without any knowledge of the governing physics, 2) produce accurate multi-step temperature forecasts in Arctic climates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.