Abstract

Single nucleotide polymorphisms (SNPs) are one type of genetic variations and each SNP represents a difference in a single DNA building block, namely a nucleotide. Previous research demonstrated that SNPs can be used to identify the correct source population of an individual. In addition, variations in the DNA sequences have an influence on human diseases. In this regard, SNPs studies are helpful for personalized medicine and treatment. In the literature, unsupervised clustering methods especially principal component analysis (PCA) have been popular for studying population structure. In this study, we investigate supervised approaches, particularly the LASSO multinomial regression classification method, for recognizing individuals' origin genetic population. Then, we introduce PCA-LASSO as an extension of LASSO method that benefits from advantageous characteristics of both PCA and LASSO regression. The experimental results obtained on the 1,000 genome project dataset show PCA-LASSO's significantly high accuracy in prediction of individual's origin population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.