Abstract

Due to the characteristics of underwater acoustic channel, such as long propagation delay and low available bandwidth, media access control (MAC) protocol designed for the underwater acoustic sensor network (UWASN) is quite different from that for the terrestrial wireless sensor network. However, for the contention-based MAC protocols, the packet transmission time is long because of the long preamble in real acoustic modems, which increase the packet collisions. And the competition phase lasts for long time when many nodes are competing for the channel to access. For the schedule-based MAC protocols, the delay is too long, especially in a UWASN with low traffic load. In order to resolve these problems, a hybrid reservation-based MAC (HRMAC) protocol is proposed for UWASNs in this paper. In the proposed HRMAC protocol, the nodes reserve the channel by declaring and spectrum spreading technology is used to reduce the collision of the control packets. Many nodes with data packets to be transmitted can reserve the channel simultaneously, and nodes with reserved channel transmit their data in a given order. The performance analysis shows that the proposed HRMAC protocol can improve the channel efficiency greatly. Simulation results also show that the proposed HRMAC protocol achieves better performance, namely higher network throughput, lower packet drop ratio, smaller end-to-end delay, less overhead of control packets and lower energy overhead, compared to existing typical MAC protocols for the UWASNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.