Abstract
A new approach for the prediction of lift, drag, and moment coefficients is presented. This approach is based on the support vector machines (SVMs) methodology and an optimization meta-heuristic algorithm called extended great deluge (EGD). The novelty of this approach is the hybridization between the SVM and the EGD algorithm. The EGD is used to optimize the SVM parameters. The training and validation of this new identification approach is realized using the aerodynamic coefficients of an ATR-42 wing model. The aerodynamic coefficients data are obtained with the XFoil software and experimental tests using the Price–Païdoussis wind tunnel. The predicted results with our approach are compared with those from the XFoil software and experimental results for different flight cases of angles of attack and Mach numbers. The main purpose of this methodology is to rapidly predict aircraft aerodynamic coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.