Abstract

Cell surface engineering using single-stranded DNA–poly(ethylene glycol)-conjugated phospholipid (ssDNA–PEG-lipid) is useful for inducing cell–cell attachment two and three dimensionally. In this review, we summarize our recent techniques for cell surface engineering and their applications to islet transplantation. Because any DNA sequence can be immobilized onto the cell surface by hydrophobic interactions between ssDNA–PEG-lipid and the cellular membrane without impairing cell function, a cell–cell hybrid can be formed through the DNA hybridization. With this technique, it would be possible to create three-dimensional hybrid structures of pancreatic islets coated with various accessory cells, such as patients’ own cells, mesenchymal and adipose-derived stem cells, endothelial progenitor cells, neural crest stem cells or regulatory T cells, which might significantly improve the outcome of islet transplantation in diabetic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.