Abstract

Health is a critical condition for living things, even before the technology exists. Nowadays the healthcare domain provides a lot of scope for research as it has extremely evolved. The most researched areas of health sectors include diabetes mellitus (DM), breast cancer, brain tumor, etc. DM is a severe chronic disease that affects human health and has a high rate throughout the world. Early prediction of DM is important to reduce its risk and even avoid it. In this study, we propose a DM prediction model based on global and local learner algorithms. The proposed global and local learners stacking (GLLS) model; combines the prediction algorithms from two largely different but complementary machine learning paradigms, specifically XGBoost and NB from global learning whereas kNN and SVM (with RBF kernel) from local learning and aggregates them by stacking ensemble technique using LR as meta-learner. The effectiveness of the GLLS model was proved by comparing several performance measures and the results of different contrast experiments. The evaluation results on UCI Pima Indian diabetes data-set (PIDD) indicates the model has achieved the better prediction performance of 99.5%, 99.5%, 99.5%, 99.1%, and 100% in terms of accuracy, AUC, F1 score, sensitivity, and specificity respectively, compared to other research results mentioned in the literature. Moreover, to better validate the GLLS model performance, three additional medical data sets; Messidor, WBC, ILPD, are considered and the model also achieved an accuracy of 82.1%, 98.6%, and 89.3% respectively. Experimental results proved the effectiveness and superiority of our proposed GLLS model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.