Abstract

In this paper we have utilized a hybrid lightweight 1D deep learning model that combines convolutional neural network (CNN) and long short-term memory (LSTM) methods for accurate, fast, and automated beat-wise ECG classification. The CNN and LSTM models were designed separately to compare with the hybrid CNN-LSTM model in terms of accuracy, number of parameters, and the time required for classification. The hybrid CNN-LSTM system provides an automated deep feature extraction and classification for six ECG beats classes including Normal Sinus Rhythm (NSR), atrial fibrillation (AFIB), atrial flutter (AFL), atrial premature beat (APB), left bundle branch block (LBBB), and right bundle branch block (RBBB). The hybrid model uses the CNN blocks for deep feature extraction and selection from the ECG beat. While the LSTM layer will learn how to extract contextual time information. The results show that the proposed hybrid CNN-LSTM model achieves high accuracy and sensitivity of 98.22% and 98.23% respectively. This model is light and fast in classifying ECG beats and superior to other previously used models which makes it very suitable for embedded systems designs that can be used in clinical applications for monitoring heart diseases in faster and more efficient manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.