Abstract

In this article, we explored the performance of several fusion strategies for bias correction of precipitation on U-Net-based-models and proposed a simple but efficient hybrid fusion strategy. The geopotential, vertical velocity, specific humidity and 3-h cumulative precipitation from Yin-He global spectral model (YHGSM) re-forecast products are used as multiple correction factors, and the 3-h cumulative precipitation calculated from ERA5 are used as labels. Experimental results reveal that, our hybrid fusion strategy can reduce the number of parameters by about 40% and obtain better fraction skill score (FSS) and threat score (TS). For TS of 0.1, 3.0, 10.0 and 20. 0 mm, U-Net with hybrid fusion improves 31.8%, 97.0%, 314.0% and 576.0% than YHGSM, improves 1.3%, 3.0%, 3.6% and 10.5% than the classical U-Net. This hybrid fusion strategy should provide a feasible approach to utilize multiple information inputs more efficiently in geophysics field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.