Abstract
Land cover monitoring using remotely sensed data requires robust classification methods for the accurate mapping of complex land cover and land use categories. Classification is a supervised learning method which maps a data item into predefined classes. Colour is an important feature used in image classification since humans tend to distinguish images mostly based on colour feature. This paper proposes a hybrid colour model for land cover classification in which colour features are extracted by combining the hue (H) values of HSV colour space and luminance (L) values of LUV colour space. The extracted features are trained and tested with random forest (RF) and support vector machine (SVM) classifiers. The performance of the proposed hybrid colour model is compared with the existing HSV colour space model using RF and SVM classifiers based on several metrics such as accuracy, sensitivity, specificity and f-score. Hyper spectral dataset of Pavia University and an IRS LISS IV orthorectified dataset are chosen as the input image for this experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.