Abstract

Collaborative and content-based filtering are the major methods in recommender systems that predict new items that users would find interesting. Each method has advantages and shortcomings of its own and is best applied in specific situations. Hybrid approaches use elements of both methods to improve performance and overcome shortcomings. In this paper, we propose a hybrid approach based on content-based and collaborative filtering, implemented in MoRe, a movie recommendation system. We also provide empirical comparison of the hybrid approach to the base methods of collaborative and content-based filtering and draw useful conclusions upon their performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.