Abstract

The use of robots in our daily lives is increasing. As we rely more on robots, thus it becomes more important for us that the robots will continue on with their mission successfully. Unfortunately, these sophisticated, and sometimes very expensive, machines are susceptible to different kinds of faults. It becomes important to apply a Fault Detection (FD) mechanism which is suitable for the domain of robots. Two important requirements of such a mechanism are: high accuracy and low computational-load during operation (online). Supervised learning can potentially produce very accurate FD models, and if the learning takes place offline then the online computational-load can be reduced. Yet, the domain of robots is characterized with the absence of labeled data (e.g., “faulty”, “normal”) required by supervised approaches, and consequently, unsupervised approaches are being used. In this paper we propose a hybrid approach - an unsupervised approach can label a data set, with a low degree of inaccuracy, and then the labeled data set is used offline by a supervised approach to produce an online FD model. Now, we are faced with a choice – should we use the unsupervised or the hybrid fault detector? Seemingly, there is no way to validate the choice due to the absence of (a priori) labeled data. In this paper we give an insight to why, and a tool to predict when, the hybrid approach is more accurate. In particular, the main impacts of our work are (1) we theoretically analyze the conditions under which the hybrid approach is expected to be more accurate. (2) Our theoretical findings are backed with empirical analysis. We use data sets of three different robotic domains: a high fidelity flight simulator, a laboratory robot, and a commercial Unmanned Arial Vehicle (UAV). (3) We analyze how different unsupervised FD approaches are improved by the hybrid technique and (4) how well this improvement fits our prediction tool. The significance of the hybrid approach and the prediction tool is the potential benefit to expert and intelligent systems in which labeled data is absent or expensive to create.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.