Abstract
In this paper a method of classifying biomedical text documents based on Hidden Markov Model is proposed and evaluated. The method is integrated into a framework named BioClass. Bioclass is composed of intelligent text classification tools and facilitates the comparison between them because it has several views of the results. The main goal is to propose a more effective based-on content classifier than current methods in this environment To test the effectiveness of the classifier presented, a set of experiments performed on the OSHUMED corpus are preseted. Our model is tested adding it learning capacity and without it, and it is compared with other classification techniques. The results suggest that the adaptive HMM model is indeed more suitable for document classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.