Abstract

A sixteen-channel, high-throughput system was designed and built to test the activity of catalysts for gas-phase photocatalytic oxidation of methanol. The system utilizes granular catalyst films to model relevant applications and allow for rapid processing. It is capable of 48 catalyst tests per day using the procedure described herein. Several experiments were performed to minimize both the within-node and between-node variances of the system. Utilizing the high-throughput system, the significance of preparation methods on the photocatalytic activity of TiO2 nanotubes was investigated. A one-half fractional factorial experiment identified the factors that significantly impact catalyst activity as the following: precursor type (Degussa P-25, or nanotubes), platinum loading, the interaction between precursor and dope time, and the interaction between the precursor and calcination temperature. Based on experimental results, catalyst activity is optimized by doping TiO2 nanotubes directly (rather than doping P-25 prior to nanotube formation), a low platinum loading (0.01 wt %), and using a dope time of 30 min followed by calcination at 773 K. The optimum catalyst preparation conditions produced a catalyst that was three times more active than the starting P-25 material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.