Abstract

Developing sulfur resistant and stable hydrogenation catalysts with a high activity is of great economic and environmental interest for the production of value-added fine chemicals, as it allows the use of crude industrial level raw materials as reactant, prevents environmental unfriendly stoichiometric reduction and cuts down energy-intensive separation/purification procedures. Here we show the metallic Ni nanoparticle well-enclosed in multilayer N doped graphene shells for the catalytic hydrogenation of nitrobenzene derivatives. The nickel core promoted multilayer N doped graphene shell not only maintains the hydrogenation ability but also create a differentiate surface electronic state preventing the poisoning of vulnerable metal by S impurities. The catalytic performance has met the product requirement of hydrogenation of industrial raw materials including 4.00 wt% inorganic/organic sulfur poisoning substances, excessive acid residue and concentrated salts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.