Abstract

In this paper, nickel was combined with multi-walled carbon nanotubes (Ni–MWNTs) to fabricate nanohybrid films on a conventional glassy carbon electrode using simultaneous electrodeposition of NiCl2 and the MWNTs in ionic liquids (ILs). The morphologies and elemental compositions of the nanohybrid films were investigated with scanning electron microscopy and energy dispersive spectroscopy. A novel non-enzymatic glucose sensor based on the Ni–MWNT nanohybrid film-modified glassy carbon electrode was described, and its electrochemical behaviors were investigated. The proposed sensor exhibited high electrocatalytic activity and good response to glucose. Under optimal conditions, the sensor showed high sensitivity (67.2μAmM−1cm−2), rapid response time (<2s) and a low detection limit (0.89μM; signal/noise ratio of 3). In particular, the upper glucose concentration limit produced a linear response of 17.5mM. Thus, the Ni–MWNT nanohybrid films represent promising sensor materials for non-enzymatic glucose sensing in routine analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.