Abstract

A high sensitivity photo-detector operating in the 245 to 880 nm wavelength range is reported. It is based on a planar Metal-Oxide-Semiconductor (MOS) structure fabricated on an insulator on silicon substrate where the insulator layer comprises a double layer dielectric stack of SiO2-HfO2. The MOS detector undergoes a voltage stress process after which it exhibits a record high responsivity of 0.4 A/W at 500–600 nm and 0.1 A/W at the spectrum edges, 245 and 880 nm. The structure is significantly simpler to fabricate than P-N or P-I-N junction devices and offers a lower dark current than Metal-Semiconductor-Metal diodes. Oxygen vacancies induced in the HfO2 sub-layer by the voltage stress form the conduction paths of the photo generated carriers. The penetration, under reverse bias conditions, of holes originating in the Si depletion layer is improved under illumination since their potential barrier is lowered. The compatibility with complimentary MOS technology processes makes this new structure attractive for many applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.