Abstract

In this paper, we report a highly selective sandwich-type fluorescence resonance energy transfer (FRET) assay for ATP detection by combining the unique optical properties of silica coated photon upconverting NaYF4:Yb3+, Er3+ nanoparticles (Si@UCNPs) with the high specific recognition ability of ATP aptamer. In the protocol, a single aptamer of ATP was split into two fragments. One of which was covalently attached to the Si@UCNPs at the 5′ end, and the other was labeled with Black Hole Quencher-1 (BHQ1) at the 3′ end. In the presence of ATP, the two fragments bound ATP with high affinity to form the sandwich complexes on the surface of Si@UCNPs. ATP induced association of the two fragments, thus bringing the Si@UCNPs and BHQ1 into close proximity. Under the illumination of 980nm laser, energy transfer took place between the Si@UCNPs as the donor and BHQ1 as the acceptor, creating an optical “sandwich-type” assay for ATP detection. By monitoring the fluorescence change of the Si@UCNPs at 550nm, the presence of the ATP could be quantitatively detected with a detection limit of 1.70μM. The linear response range was 2μM–16μM. The background of this assay was ignorable because the fluorescence intensity of Si@UCNPs at 550nm was not changed in the absence of ATP. This assay was also able to discriminate ATP from its analogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.