Abstract

SiO-based materials as lithium-ion anodes have attracted huge attention owing to their ultrahigh capacity. However, they usually undergo severe volume expansion over the repeated lithiation/delithiation processes and have low electronic conductivity, leading to an inferior cycling stability and poor rate capability. In this study, carbon nanotubes in situ grown on the surface of commercially available micro-sized SiO (D50 = 5 μm) were prepared. The conductive network composed of one-dimensional carbon nanotubes could enhance its conductivity and enhance the structural stability during the cycling. The synthesized 3D-SiO@C material demonstrates good long-term cycling stability, with a reversible capacity of up to 687.7 mA h g-1 after 1000 cycles, and it maintains a high reversible capacity of 736.8 mA h g-1, even at a high current density of 1 A g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.