Abstract

This paper presents a spectral method for numerically solving the Navier–Stokes equations in a semi-infinite domain bounded by a flat plane: the aim is to obtain high accuracy with flexible boundary conditions. The proposed use is for numerical simulations of small-scale atmospheric phenomena near the ground. We introduce basis functions that fit the semi-infinite domain, and an integral condition for vorticity is used to reduce the computational cost when solving the partial differential equations that appear when the viscosity term is treated implicitly. Furthermore, in order to ensure high accuracy, two iteration techniques are applied when solving the system of linear equations and in determining boundary values. This significantly reduces numerical errors, and the proposed method enables high-resolution numerical experiments. This is demonstrated by numerical experiments showing the collision of a vortex ring into a wall; these were performed using numerical models based on the proposed method. It is shown that the time evolution of the flow field is successfully obtained not only near the boundary, but also in a region far from the boundary. The applicability of the proposed method and the integral condition is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.