Abstract

This paper presents a free from locking higher order solid-shell element based on the Enhanced Assumed Strain (EAS) for laminated composite structures analysis. The transverse shear strain is divided into two parts: the first one is independent of the thickness coordinate and formulated by the Assumed Natural Strain (ANS) method; the second part is an enhancing part which ensures a quadratic distribution through the thickness. This permit to remove the shear correction factors and improves the accuracy of transverse shear stresses. Also, volumetric locking is completely avoided by using the optimal parameters in the EAS method. Comparisons of numerical results with those extracted from literature show the performance of the developed finite element.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.