Abstract

A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is usually approached as a perturbation to a pump, and its analysis is based on preserving only terms which are linear on the perturbation, discarding those of higher order. In this sense, the linear MI analysis is relevant to the understanding of the onset of many other nonlinear phenomena, such as supercontinuum generation, but it has limitations as it can only be applied to the propagation of the perturbation over short distances.In this work, we propose approximations to the propagation of a perturbation, consisting of additive white noise, that go beyond the linear modulation instability analysis, and show them to be in excellent agreement with numerical simulations and experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.