Abstract

We obtained high-resolution (λ/Δλ∼28,000) infrared spectra of Comet 103P/Hartley 2 on UT 2010 November 4.6 using the NIRSPEC spectrometer at the W.M. Keck Observatory. Here we present spectra of Hartley 2 between 2.832 and 3.639μm (3531–2748cm−1), representing the most complete high-resolution infrared survey of a Jupiter-family comet to date in this wavelength region. We have tabulated rest frequencies, line fluxes, line signal-to-noise ratios and line widths for all detected emissions. Fluorescence models, published line lists and laboratory spectra were used to obtain molecular assignments for detected emissions. Multiple lines of the following species were detected in Hartley 2: H2O, OH, CH3OH, C2H6, HCN, C2H2, H2CO, NH3 and NH2. All identified species seen in this survey have been previously detected in comets. There were 364 distinct emission features present in these spectra, of which 36 were unidentified. We compare the spectrum of Hartley 2 to chemically different Jupiter-family Comets 73P/Schwassmann–Wachmann 3-B and 17P/Holmes in order to obtain additional information on the characteristics of unknown lines through the comparison of relative line fluxes for corresponding emissions in these comets. For the strongest unidentified emissions, additional information was also obtained through a comparison of their spatial distributions in the coma to that of known emission features in Hartley 2. This spectral survey of Hartley 2 provides detailed information about its overall volatile chemistry, provides a comparison to past and future high-resolution infrared datasets, and further characterizes the most promising spectral regions for future molecular searches in comets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.