Abstract

Through a combination of mechanical agitation, ultrasonic dispersion, and modification by different dispersants, including polyvinyl pyrrolidone, sodium lignin sulfonate, and carboxymethylcellulose sodium (CMC), a graphene conductive slurry for lithium-ion batteries anode is prepared. These dispersants can inhibit the agglomeration of graphene and help to build the conductive network when graphene slurry used as a conductive agent for lithium-ion batteries. The SiOx/graphene-CMC electrode shows an excellent electrochemical performance with a first charge/discharge capacity of 1273.8/1723.7 mAh/g and a Coulomb efficiency of 73.9% at a constant current of 100 mA/g. The capacity retention rate of the lithium-ion battery is 84% (1070.2 mAh/g) after 100 cycles under current of 200 mA/g. The results indicate that the dispersant treatment provides a simple mass production method to disperse graphene stably, and the graphene conductive slurry can employ for high-performance SiOx anodes conductive agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.